The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming

نویسندگان

  • Karl D. Castillo
  • Justin B. Ries
  • John F. Bruno
  • Isaac T. Westfield
چکیده

Anthropogenic increases in atmospheric CO2 over this century are predicted to cause global average surface ocean pH to decline by 0.1-0.3 pH units and sea surface temperature to increase by 1-4°C. We conducted controlled laboratory experiments to investigate the impacts of CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) and warming (25, 28, 32°C) on the calcification rate of the zooxanthellate scleractinian coral Siderastrea siderea, a widespread, abundant and keystone reef-builder in the Caribbean Sea. We show that both acidification and warming cause a parabolic response in the calcification rate within this coral species. Moderate increases in pCO2 and warming, relative to near-present-day values, enhanced coral calcification, with calcification rates declining under the highest pCO2 and thermal conditions. Equivalent responses to acidification and warming were exhibited by colonies across reef zones and the parabolic nature of the corals' response to these stressors was evident across all three of the experiment's 30-day observational intervals. Furthermore, the warming projected by the Intergovernmental Panel on Climate Change for the end of the twenty-first century caused a fivefold decrease in the rate of coral calcification, while the acidification projected for the same interval had no statistically significant impact on the calcification rate-suggesting that ocean warming poses a more immediate threat than acidification for this important coral species.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Next-century ocean acidification and warming both reduce calcification rate, but only acidification alters skeletal morphology of reef-building coral Siderastrea siderea

Atmospheric pCO2 is predicted to rise from 400 to 900 ppm by year 2100, causing seawater temperature to increase by 1-4 °C and pH to decrease by 0.1-0.3. Sixty-day experiments were conducted to investigate the independent and combined impacts of acidification (pCO2 = 424-426, 888-940 ppm-v) and warming (T = 28, 32 °C) on calcification rate and skeletal morphology of the abundant and widespread ...

متن کامل

Thermal and pCO2 Stress Elicit Divergent Transcriptomic Responses in a Resilient Coral

The oceans are becoming warmer and more acidic as a result of rising atmospheric pCO2. Transcriptome plasticity may facilitate marine organisms’ acclimation to thermal and acidification stress by tailoring gene expression to mitigate the impacts of these stressors. Here, we produce the first transcriptome of the abundant, ubiquitous, and resilient Caribbean reef-building coral Siderastrea sider...

متن کامل

Correction: Mass coral bleaching in 2010 in the Southern Caribbean

Ocean temperatures are increasing globally and the Caribbean is no exception. An extreme ocean warming event in 2010 placed Tobago's coral reefs under severe stress resulting in widespread coral bleaching and threatening the livelihoods that rely on them. The bleaching response of four reef building taxa was monitored over a six month period across three major reefs systems in Tobago. By identi...

متن کامل

Declining Coral Skeletal Extension for Forereef Colonies of Siderastrea siderea on the Mesoamerican Barrier Reef System, Southern Belize

BACKGROUND Natural and anthropogenic stressors are predicted to have increasingly negative impacts on coral reefs. Understanding how these environmental stressors have impacted coral skeletal growth should improve our ability to predict how they may affect coral reefs in the future. We investigated century-scale variations in skeletal extension for the slow-growing massive scleractinian coral S...

متن کامل

Species-specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs.

Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 281  شماره 

صفحات  -

تاریخ انتشار 2014